

python-gnupg - A Python wrapper for GnuPG

	Release:

	0.4.7

	Date:

	Mar 11, 2021

The gnupg module allows Python programs to make use of the functionality provided
by the GNU Privacy Guard [http://gnupg.org/] (abbreviated GPG or GnuPG). Using this module, Python
programs can encrypt and decrypt data, digitally sign documents and verify digital
signatures, manage (generate, list and delete) encryption keys, using Public Key
Infrastructure (PKI) encryption technology based on OpenPGP.

This module is expected to be used with Python versions >= 3.6, or Python 2.7 for
legacy code. Install this module using pip install python-gnupg. You can then use
this module in your own code by doing import gnupg or similar.

Note

There is at least one fork of this project, which was apparently created because an
earlier version of this software used the subprocess module with
shell=True, making it vulnerable to shell injection. This is no longer the
case.

Forks may not be drop-in compatible with this software, so take care to use the
correct version, as indicated in the pip install command above.

Deployment Requirements

Apart from a recent-enough version of Python, in order to use this module you need to
have access to a compatible version of the GnuPG executable. The system has been
tested with GnuPG v1.4.9 on Windows and Ubuntu. On a Linux platform, this will
typically be installed via your distribution’s package manager (e.g. apt-get on
Debian/Ubuntu). Windows binaries are available here [ftp://ftp.gnupg.org/gcrypt/binary/] – use one of the
gnupg-w32cli-1.4.x.exe installers for the simplest deployment options.

Note

On Windows, it is not necessary to perform a full installation of GnuPG, using
the standard installer, on each computer: it is normally sufficient to distribute
only the executable, gpg.exe, and a DLL which it depends on, iconv.dll.
These files do not need to be placed in system directories, nor are registry
changes needed. The files need to be placed in a location such that implicit
invocation will find them - such as the working directory of the application which
uses the gnupg module, or on the system path if that is appropriate for your
requirements. Alternatively, you can specify the full path to the gpg
executable. Note, however, that if you want to use GnuPG 2.0, then this simple
deployment approach may not work, because there are more dependent files which you
have to ship. For this reason, our recommendation is to stick with GnuPG 1.4.x on
Windows, unless you specifically need 2.0 features - in which case, you may have to
do a full installation rather than just relying on a couple of files).

Recent versions of GnuPG (>= 2.1.x) introduce a number of changes:

	By default, passphrases cannot be passed via streams to gpg unless the line
allow-loopback-pinentry is added to gpg-agent.conf in the home directory
used by gpg (this is also where the keyring files are kept). If that file
does not exist, you will need to create it with that single line. Note that even
with this configuration, some versions of GnuPG 2.1.x won’t work as expected. In
our testing, we found, for example, that the 2.1.11 executable shipped with
Ubuntu 16.04 did’t behave helpfully, whereas a GnuPG 2.1.15 executable compiled
from source on the same machine worked as expected.

	To export secret keys, a passphrase must be provided.

Acknowledgements

This module is based on an earlier version, GPG.py, written by Andrew Kuchling.
This was further improved by Richard Jones, and then even further by Steve Traugott.
The gnupg module is derived from Steve Traugott’s module [https://web.archive.org/web/20150310174851/http://trac.t7a.org/isconf/browser/trunk/lib/python/isconf/GPG.py] (the original site no
longer exists - this link is to the Wayback Machine), and uses Python’s subprocess
module to communicate with the GnuPG executable, which it uses to spawn a subprocess
to do the real work.

I’ve gratefully incorporated improvements contributed or suggested by:

	Paul Cunnane (detached signature support)

	Daniel Folkinshteyn (recv_keys, handling of subkeys and SIGEXPIRED, KEYEXPIRED
while verifying, EXPKEYSIG, REVKEYSIG)

	Dmitry Gladkov (handle KEYEXPIRED when importing)

	Abdul Karim (keyring patch)

	Yann Leboulanger (handle ERRSIG and NO_PUBKEY while verifying, get subkeys)

	Kirill Yakovenko (RSA and IDEA support)

	Robert Leftwich (handle INV_SGNR, KEY_NOT_CREATED)

	Michal Niklas (Trust levels for signature verification)

	David Noël (search_keys, send_keys functionality)

	David Andersen (handle UNEXPECTED during verification)

	Jannis Leidel (output signature to a file)

	Venzen Khaosan (scan_keys functionality)

	Marcel Pörner (handle EXPORTED, EXPORT_RES)

	Kévin Bernard-Allies (handle filename encoding under Windows)

	Daniel Kahn Gillmor (various improvements which were released in 0.4.1)

	William Foster (trust_key patch)

and Google Code / BitBucket users

	dprovins (ListKeys handle_status)

	ernest0x (improved support for non-ASCII input)

	eyepulp (additional options for encryption/decryption)

	hysterix.is.slackin (symmetric encryption support)

	natureshadow (improved status handling when smart cards in use)

	SunDwarf (storing signatures against keys)

(If I’ve missed anyone from this list, please let me know.)

Before you Start

GnuPG works on the basis of a “home directory” which is used to store public and
private keyring files as well as a trust database. You need to identify in advance
which directory on the end-user system will be used as the home directory, as you will
need to pass this information to gnupg.

Getting Started

You interface to the GnuPG functionality through an instance of the GPG class:

>>> gpg = gnupg.GPG(gnupghome='/path/to/home/directory')

If the home directory does not exist, a ValueError will be raised. Thereafter, all the
operations available are accessed via methods of this instance. If the gnupghome
parameter is omitted, GnuPG will use whatever directory is the default (consult the
GnuPG documentation for more information on what this might be).

The GPG() constructor also accepts the following additional optional keyword
arguments:

	gpgbinary (defaults to “gpg”)

	The path to the gpg executable.

	verbose (defaults to False)

	Print information (e.g. the gpg command lines, and status messages returned by
gpg) to the console. You don’t generally need to set this option, since the module
uses Python’s logging package to provide more flexible functionality. The
status messages from GPG are quite voluminous, especially during key generation.

	use_agent (defaults to False)

	If specified as True, the --use-agent parameter is passed to GPG, asking it to
use any in-memory GPG agent (which remembers your credentials).

	keyring (defaults to None)

	If specified, the value is used as the name of the keyring file. The default
keyring is not used. A list of paths to keyring files can also be specified.

	options (defaults to None)

	If specified, the value should be a list of additional command-line options to
pass to GPG.

	secret_keyring (defaults to None)

	If specified, the value is used as the name of the secret keyring file. A list of
paths to secret keyring files can also be specified. Note that these files are
not used by GnuPG >= 2.1.

Changed in version 0.3.4: The keyring argument can now also be a list of keyring filenames.

New in version 0.3.4: The secret_keyring argument was added. Note that this argument is not used
when working with GnuPG >= 2.1.

Note

If you specify values in options, make sure you don’t specify values
which will conflict with other values added by python-gnupg. You should be familiar
with GPG command-line arguments and how they affect GPG’s operation.

Changed in version 0.3.7: The default encoding was changed to latin-1. In earlier versions, it was either
locale.getpreferredencoding() or, failing that, sys.stdin.encoding, and
failing that, utf-8.

If the gpgbinary executable cannot be found, a ValueError is raised in
GPG.__init__().

The low-level communication between the gpg executable and python-gnupg is in
terms of bytes, and python-gnupg tries to convert gpg’s stderr stream to text
using an encoding. The default value of this is latin-1, but you can override this
by setting the encoding name in the GPG instance’s encoding attribute after
instantiation, like this:

>>> gpg = gnupg.GPG(gnupghome='/path/to/home/directory')
>>> gpg.encoding = 'utf-8'

Note

If you use the wrong encoding, you may get exceptions. The 'latin-1'
encoding leaves bytes as-is and shouldn’t fail with encoding/decoding errors,
though it may not decode text correctly (so you may see odd characters in the
decoding output). The gpg executable will use an output encoding based on your
environment settings (e.g. environment variables, code page etc.) but defaults to
latin-1.

Key Management

The module provides functionality for generating (creating) keys, listing keys,
deleting keys, and importing and exporting keys.

Generating keys

The first thing you typically want to do when starting with a PKI framework is to
generate some keys. You can do this as follows:

>>> key = gpg.gen_key(input_data)

where input_data is a special command string which tells GnuPG the parameters you
want to use when creating the key. To make life easier, a helper method is provided
which takes keyword arguments which allow you to specify individual parameters of the
key, as in the following example:

>>> input_data = gpg.gen_key_input(key_type="RSA", key_length=1024)

Sensible defaults are provided for parameters which you don’t specify, as shown in the
following table:

	Parameter

	Keyword Argument

	Default value

	Example values

	Meaning of parameter

	Key-Type

	key_type

	“RSA”

	“RSA”, “DSA”

	The type of the primary key to generate. It
must be capable of signing.

	Key-Length

	key_length

	1024

	1024, 2048

	The length of the primary key in bits.

	Name-Real

	name_real

	“Autogenerated Key”

	“Fred Bloggs”

	The real name of the user identity which
is represented by the key.

	Name-Comment

	name_comment

	“Generated by gnupg.py”

	“A test user”

	A comment to attach to the user id.

	Name-Email

	name_email

	<username>@<hostname>

	“fred.bloggs@domain.com”

	An email address for the user.

If you don’t specify any parameters, the values in the table above will be used with
the defaults indicated. There is a whole set of other parameters you can specify; see
this GnuPG document [https://github.com/gpg/gnupg/blob/master/doc/DETAILS] for more details. While use of RSA keys is common (they can be
used for both signing and encryption), another popular option is to use a DSA primary
key (for signing) together with a secondary El-Gamal key (for encryption). For this
latter option, you could supply the following additional parameters:

	Parameter

	Keyword Argument

	Example values

	Meaning of parameter

	Subkey-Type

	subkey_type

	“RSA”, “ELG-E”

	The type of the secondary key to generate.

	Subkey-Length

	subkey_length

	1024, 2048

	The length of the secondary key in bits.

	Expire-Date

	expire_date

	“2009-12-31”, “365d”, “3m”,
“6w”, “5y”, “seconds=<epoch>”,
0

	The expiration date for the primary and any
secondary key. You can specify an ISO date,
A number of days/weeks/months/years, an
epoch value, or 0 for a non-expiring key.

	Passphrase

	passphrase

	“secret”

	The passphrase to use. If this parameter is
not specified, no passphrase is needed to
access the key. Passphrases using newlines
are not supported. Note that for GnuPG
versions >= 2.1, a passphrase must be
provided, unless extra steps are taken:
see the no_protection argument, below.

	%no-protection

	no_protection

	False (the default), True

	If no passphrase is wanted for a key (which
might be the default for tests, say), or if
you want to use an empty string as a
passphrase, then you should specify True
for this parameter. Otherwise, and if you
don’t use pinentry to enter a passphrase,
then GnuPG >= 2.1 will not allow this. It
doesn’t make sense to specify True if a
non-empty passphrase is being supplied.

New in version 0.4.7: The no_protection keyword argument was added.

Whatever keyword arguments you pass to gen_key_input() (other
than no_protection) will be converted to the parameters expected by
GnuPG by replacing underscores with hyphens and title-casing the
result. You can of course construct the parameters in your own
dictionary params and then pass it as follows:

>>> input_data = gpg.gen_key_input(**params)

The no_protection argument, if True, will be used to generate a
%no-protection line which tells GnuPG that no protection with a
passphrase is desired.

Performance Issues

Key generation requires the system to work with a source of random numbers. Systems
which are better at generating random numbers than others are said to have higher
entropy. This is typically obtained from the system hardware; the GnuPG
documentation recommends that keys be generated only on a local machine (i.e. not
one being accessed across a network), and that keyboard, mouse and disk activity be
maximised during key generation to increase the entropy of the system.

Unfortunately, there are some scenarios - for example, on virtual machines which don’t
have real hardware - where insufficient entropy causes key generation to be
extremely slow. If you come across this problem, you should investigate means of
increasing the system entropy. On virtualised Linux systems, this can often be
achieved by installing the rng-tools package. This is available at least on
RPM-based and APT-based systems (Red Hat/Fedora, Debian, Ubuntu and derivative
distributions).

Exporting keys

To export keys, use the export_keys() method:

>>> ascii_armored_public_keys = gpg.export_keys(keyids) # same as gpg.export_keys(keyids, False)
>>> ascii_armored_private_keys = gpg.export_keys(keyids, True) # True => private keys

For the keyids parameter, you can use a sequence of anything which GnuPG itself
accepts to identify a key - for example, the keyid or the fingerprint could be used.
If you want to pass a single keyid, then you can just pass in a string which
identifies the key.

The export_keys method has some additional keyword arguments:

	armor (defaulting to True) - when True, passes --armor to gpg.

	minimal (defaulting to False) - when True, passes
--export-options export-minimal to gpg.

	passphrase - if specified, sends the specified passphrase to gpg. For
GnuPG >= 2.1, exporting secret keys requires a passphrase to be provided.

	expect_passphrase - defaults to True for backward compatibility. If the
passphrase is to be passed to gpg via pinentry, you wouldn’t pass it here - so
specify expect_passphrase=False in that case. If you don’t do that, and don’t
pass a passphrase, a ValueError will be raised.

New in version 0.3.7: The armor and minimal keyword arguments were added.

New in version 0.4.0: The passphrase keyword argument was added.

New in version 0.4.2: The expect_passphrase keyword argument was added.

Importing and receiving keys

To import keys, get the key data as an ASCII string, say key_data. Then:

>>> import_result = gpg.import_keys(key_data)

This will import all the keys in key_data. The number of keys imported will be
available in import_result.count and the fingerprints of the imported keys will be
in import_result.fingerprints.

In addition, extra_args and passphrase keyword parameter can be specified. If
provided, extra_args is treated as a list of additional arguments to pass to the
gpg executable. If passphrase is specified, it is passed to gpgg for when
an imported secret key has a passphrase.

New in version 0.4.5: The extra_args keyword argument was added.

New in version 0.4.7: The passphrase keyword argument was added.

To receive keys from a keyserver, use:

>>> import_result = gpg.recv_keys('server-name', 'keyid1', 'keyid2', ...)

This will fetch keys with all specified keyids and import them. Note that on Windows,
you may require helper programs such as gpg_hkp.exe, distributed with GnuPG, to
successfully run recv_keys. On Jython, security permissions may lead to failure of
recv_keys.

Note that when you import keys, you may get spurious “key expired” / “signature
expired” messages which are sent by gpg and collected by python-gnupg. This
may happen, for example, if there are subkey expiry dates which have been extended, so
that the keys haven’t actually expired, even when gpg sends messages that they
have. Make sure you just look at the count and fingerprints attributes to
identify the keys that were imported.

Listing keys

Now that we’ve seen how to generate, import and export keys, let’s move on to finding
which keys we have in our keyrings. This is fairly straightforward:

>>> public_keys = gpg.list_keys() # same as gpg.list_keys(False)
>>> private_keys = gpg.list_keys(True) # True => private keys

The returned value from list_keys() is a subclass of Python’s list class.
Each entry represents one key and is a Python dictionary which contains useful
information about the corresponding key.

The following entries are in the returned dictionary. Some of the key names are not
ideal for describing the values, but they have been left as is for backward
compatibility reasons. As GnuPG documentation [https://github.com/gpg/gnupg/blob/master/doc/DETAILS] has improved, a better
understanding is possible of the information returned by gpg.

	dict key

	dict value (all string values)

	type

	Type of key

	trust

	The validity of the key

	length

	The length of the key in bits

	algo

	Public key algorithm

	keyid

	The key ID

	date

	The creation date of the key in UTC as a Unix timestamp

	expires

	The expiry date of the key in UTC as a timestamp, if specified

	dummy

	Certificate serial number, UID hash or trust signature info

	ownertrust

	The level of owner trust for the key

	uid

	The user ID

	sig

	Signature class

	cap

	Key capabilities

	issuer

	Issuer information

	flag

	A flag field

	token

	Token serial number

	hash

	Hash algorithm

	curve

	Curve name for elliptic curve cryptography (ECC) keys

	compliance

	Compliance flags

	updated

	Last updated timestamp

	origin

	Origin of keys

	subkeys

	A list containing [keyid, type] elements for each subkey

	subkey_info

	A dictionary of subkey information keyed on subkey id

Depending on the version of gpg used, some of these keys may have the value
'unavailable'. The last two keys are provided by python-gnupg rather than
gpg.

For more information about the values in this dictionary, refer to the GnuPG
documentation linked above. (Note that that documentation is not terribly
user-friendly, but nevertheless it should be usable.)

New in version 0.3.8: The returned value from list_keys() now has a new attribute, key_map,
which is a dictionary mapping key and subkey fingerprints to the corresponding
key’s dictionary. With this change, you don’t need to iterate over the (potentially
large) returned list to search for a key with a given fingerprint - the key_map
dict will take you straight to the key info, whether the fingerprint you have is
for a key or a subkey.

New in version 0.3.8: You can also list a subset of keys by specifying a keys= keyword argument to
list_keys() whose value is either a single string matching a key, or a list
of strings matching multiple keys. In this case, the return value only includes
matching keys.

New in version 0.3.9: A new sigs= keyword argument has been added to list_keys(), defaulting to
False. If you specify true, the sigs entry in the key information returned
will contain a list of signatures which apply to the key. Each entry in the list is
a 3-tuple of (keyid, user-id, signature-class) where the
signature-class is as defined by RFC-4880 [https://tools.ietf.org/html/rfc4880#section-5.2.1].

It doesn’t make sense to supply both secret=True and sigs=True (people
can’t sign your secret keys), so in case secret=True is specified, the
sigs= value has no effect.

New in version 0.4.1: Instances of the GPG class now have an additional on_data attribute, which
defaults to None. It can be set to a callable which will be called with a
single argument - a binary chunk of data received from the gpg executable. The
callable can do whatever it likes with the chunks passed to it - e.g. write them to
a separate stream. The callable should not raise any exceptions (unless it wants
the current operation to fail).

New in version 0.4.2: Information on keys returned by list_keys() or scan_keys() now incudes
a subkey_info dictionary, which contains any returned information on subkeys
such as creation and expiry dates. The dictionary is keyed on the subkey ID. The
following additional keys are present in key information dictionaries: cap,
issuer, flag, token, hash, curve, compliance, updated
and origin.

New in version 0.4.4: Instances of the GPG class now have an additional
check_fingerprint_collisions attribute, which defaults to False. If set to
a truthy value, fingerprint collisions are checked for (and a ValueError raised
if a collision is detected) when listing or scanning keys. It appears that gpg
is quite lenient about allowing duplicated keys in keyrings, which would lead to
collisions.

Changed in version 0.4.4: The on_data callable will now be called with an empty chunk when the data
stream from gpg is exhausted. It can now also return a value: if the value
False is returned, the chunk will not be buffered within python-gnupg.
This might be useful if you want to do your own buffering or avoid buffering
altogether. If any other value is returned (including the value None, for
backward compatibility) the chunk will be buffered as normal by python-gnupg.

New in version 0.4.6: Instances of the GPG class now have an additional error_map attribute,
which defaults to None. If you set this, the value should be a dictionary
mapping error codes to error messages. The source distribution includes a file
messages.json which contains such a mapping, gleaned from the GnuPG library
libgpg-error, version 1.37. The test suite shows how to convert that JSON to a form
suitable for converting to an error_map value (basically, converting the string
keys in the JSON to integers using base 16).

Setting the trust level for imported keys

You can set the trust level for imported keys as follows:

>>> gpg.trust_keys(fingerprints, trustlevel)

where the fingerprints are a list of fingerprints of keys for which the trust
level is to be set, and trustlevel is one of the string values
'TRUST_UNDEFINED', 'TRUST_NEVER', 'TRUST_MARGINAL', 'TRUST_FULLY' or
'TRUST_ULTIMATE'.

You can also specify a single fingerprint for the fingerprints parameter.

New in version 0.4.2: The trust_keys method was added.

Scanning keys

We can also scan keys in files without importing them into a local keyring, as
follows:

>>> keys = gpg.scan_keys(key_file_name)

The returned value from scan_keys() has the same format as for list_keys().

New in version 0.3.7: The scan_keys method was added.

Deleting keys

To delete keys, their key identifiers must be specified. If a public/private keypair
has been created, a private key needs to be deleted before the public key can be
deleted:

>>> key = gpg.gen_key(gpg.gen_key_input())
>>> fp = key.fingerprint
>>> str(gpg.delete_keys(fp)) # same as gpg.delete_keys(fp, False)
'Must delete secret key first'
>>> str(gpg.delete_keys(fp, True))# True => private keys
'ok'
>>> str(gpg.delete_keys(fp))
'ok'
>>> str(gpg.delete_keys("nosuchkey"))
'No such key'

The argument you pass to delete_keys() can be either a single key identifier
(e.g. keyid or fingerprint) or a sequence of key identifiers.

The delete_keys method has some additional keyword arguments:

	passphrase - if specified, sends the specified passphrase to gpg. For GnuPG
>= 2.1, exporting secret keys requires a passphrase to be provided.

	expect_passphrase - defaults to True for backward compatibility. If the
passphrase is to be passed to gpg via pinentry, you wouldn’t pass it here - so
specify expect_passphrase=False in that case. If you don’t do that, and don’t
pass a passphrase, a ValueError will be raised.

New in version 0.4.0: The passphrase keyword argument was added.

New in version 0.4.2: The expect_passphrase keyword argument was added.

Searching for keys

You can search for keys by passing a search query and optionally a keyserver name. If
no keyserver is specified, pgp.mit.edu is used. A list of dictionaries describing
keys that were found is returned (this list could be empty). For example:

>>> gpg.search_keys('vinay_sajip@hotmail.com', 'keyserver.ubuntu.com')
[{'keyid': u'92905378', 'uids': [u'Vinay Sajip <vinay_sajip@hotmail.com>'], 'expires': u'', 'length': u'1024', 'algo': u'17', 'date': u'1221156445', 'type': u'pub'}]

New in version 0.3.5: The search_keys method was added.

Sending keys

You can send keys to a keyserver by passing its name and some key identifiers. For
example:

>>> gpg.send_keys('keyserver.ubuntu.com', '6E4D5A2B')
<gnupg.SendResult object at 0xb74d55ac>

New in version 0.3.5: The send_keys method was added.

Encryption and Decryption

Data intended for some particular recipients is encrypted with the public keys of
those recipients. Each recipient can decrypt the encrypted data using the
corresponding private key.

Encryption

To encrypt a message, use the following approach:

>>> encrypted_ascii_data = gpg.encrypt(data, recipients)

If you want to encrypt data in a file (or file-like object), use:

>>> encrypted_ascii_data = gpg.encrypt_file(stream, recipients) # e.g. after stream = open(filename, "rb")

These methods both return an object such that:

	If encryption succeeded, the returned object’s ok attribute is set to True.
Otherwise, the returned object’s ok attribute is set to False and its
status attribute (a message string) provides more information as to the reason
for failure (for example, 'invalid recipient' or 'key expired').

	str(encrypted_ascii_data) gives the encrypted data in a non-binary format.

In both cases, recipients is a list of key fingerprints for those recipients. For
your convenience, if there is a single recipient, you can pass the fingerprint rather
than a 1-element array containing the fingerprint. Both methods accept the following
optional keyword arguments:

	sign (defaults to None)

	Either the Boolean value True, or the fingerprint of a key which is used to
sign the encrypted data. If True is specified, the default key is used for
signing. When not specified, the data is not signed.

	always_trust (defaults to False)

	Skip key validation and assume that used keys are always fully trusted.

	passphrase (defaults to None)

	A passphrase to use when accessing the keyrings.

	extra_args (defaults to None)

	A list of additional arguments to pass to the gpg executable. For example, you
could pass extra_args=['-z', '0'] to disable compression, or you could pass
extra_args=['--set-filename', 'name-to-embed-in-encrypted-file.txt'] to embed
a specific file name in the encrypted message.

	symmetric (defaults to False)

	If specified, symmetric encryption is used. In this case, specify recipients as
None. If True is specified, then the default cipher algorithm (CAST5)
is used. Starting with version 0.3.5, you can also specify the cipher-algorithm to
use (for example, 'AES256'). Check your gpg command line help to see what
symmetric cipher algorithms are supported. Note that the default (CAST5) may
not be the best available.

Changed in version 0.3.5: A string can be passed for the symmetric argument, as well as True or
False. If a string is passed, it should be a symmetric cipher algorithm
supported by the gpg you are using.

New in version 0.4.1: The extra_args keyword argument was added.

The encrypt_file method takes the following additional keyword arguments:

	armor (defaults to True)

	Whether to use ASCII armor. If False, binary data is produced.

	output (defaults to None)

	The name of an output file to write to. If a name is specified, the encrypted
output is written directly to the file.

Note

Any public key provided for encryption should be trusted, otherwise
encryption fails but without any warning. This is because gpg just prints a message
to the console, but does not provide a specific error indication that the Python
wrapper can use.

Decryption

To decrypt a message, use the following approach:

>>> decrypted_data = gpg.decrypt(data)

If you want to decrypt data in a file (or file-like object), use:

>>> decrypted_data = gpg.decrypt_file(stream) # e.g. after stream = open(filename, "rb")

These methods both return an object such that str(decrypted_data) gives the
decrypted data in a non-binary format. If decryption succeeded, the returned object’s
ok attribute is set to True. Otherwise, the returned object’s ok attribute
is set to False and its status attribute (a message string) provides more
information as to the reason for failure (for example, 'bad passphrase' or
'decryption failed').

Both methods accept the following optional keyword arguments:

	always_trust (defaults to False)

	Skip key validation and assume that used keys are always fully trusted.

	passphrase (defaults to None)

	A passphrase to use when accessing the keyrings.

	extra_args (defaults to None)

	A list of additional arguments to pass to the gpg executable.

New in version 0.4.1: The extra_args keyword argument was added.

New in version 0.4.2: Upon a successful decryption, the keyid of the decrypting key is stored in the
key_id attribute of the result, if this information is provided by gpg.

The decrypt_file method takes the following additional keyword argument:

	output (defaults to None)

	The name of an output file to write to. If a name is specified, the decrypted
output is written directly to the file.

Using signing and encryption together

If you want to use signing and encryption together, use the following approach:

>>> encrypted_data = gpg.encrypt(data, recipients, sign=signer_fingerprint, passphrase=signer_passphrase)

The resulting encrypted data contains the signature. When decrypting the data, upon
successful decryption, signature verification is also performed (assuming the relevant
public keys are available at the recipient end). The results are stored in the object
returned from the decrypt call:

>>> decrypted_data = gpg.decrypt(data, passphrase=recipient_passphrase)

At this point, if a signature is verified, signer information is held in attributes of
decrpyted_data: username, key_id, signature_id, fingerprint,
trust_level and trust_text. If the message wasn’t signed, these attributes
will all be set to None.

The trust levels are (in increasing order) TRUST_UNDEFINED, TRUST_NEVER,
TRUST_MARGINAL, TRUST_FULLY and TRUST_ULTIMATE. If verification succeeded,
you can test the trust level against known values as in the following example:

decrypted_data = gpg.decrypt(data, passphrase=recipient_passphrase))
if decrypted_data.trust_level is not None and decrypted_data.trust_level >= decrypted_data.TRUST_FULLY:
 print('Trust level: %s' % decrypted_data.trust_text)

New in version 0.3.1: The trust_level and trust_text attributes were added.

Signing and Verification

Data intended for digital signing is signed with the private key of the signer. Each
recipient can verify the signed data using the corresponding public key.

Signing

To sign a message, do the following:

>>> signed_data = gpg.sign(message)

or, for data in a file (or file-like object), you can do:

>>> signed_data = gpg.sign_file(stream) # e.g. after stream = open(filename, "rb")

These methods both return an object such that str(signed_data) gives the signed
data in a non-binary format. They accept the following optional keyword arguments:

	keyid (defaults to None)

	The id for the key which will be used to do the signing. If not specified, the
first key in the secret keyring is used.

	passphrase (defaults to None)

	A passphrase to use when accessing the keyrings.

	clearsign (defaults to True)

	Returns a clear text signature, i.e. one which can be read without any special
software.

	detach (defaults to False)

	Returns a detached signature. If you specify True for this, then the detached
signature will not be clear text, i.e. it will be as if you had specified a
False value for clearsign. This is because if both are specified, gpg
ignores the request for a detached signature.

	binary (defaults to False)

	If True, a binary signature (rather than armored ASCII) is created.

	output (defaults to None)

	If specified, this is used as the file path where GPG outputs the signature.
Convention dictates a .asc or .sig file extension for this.

	extra_args (defaults to None)

	A list of additional arguments to pass to the gpg executable.

Note: If the data being signed is binary, calling str(signed_data) may raise
exceptions. In that case, use the fact that signed_data.data holds the binary
signed data. Usually the signature itself is ASCII; it’s the message itself which may
cause the exceptions to be raised. (Unless a detached signature is requested, the
result of signing is the message with the signature appended.)

The hash algorihm used when creating the signature can be found in the
signed_data.hash_algo attribute.

New in version 0.2.5: The detach keyword argument was added in version 0.2.5.

New in version 0.2.6: The binary keyword argument was added in version 0.2.6.

New in version 0.3.7: The output keyword argument was added in version 0.3.7.

New in version 0.4.1: The extra_args keyword argument was added.

New in version 0.4.2: The keyid and username of the signing key are stored in the key_id and
username attributes of the result, if this information is provided by gpg
(which should happen if you specify extra_args=['--verbose']).

Verification

To verify some data which you’ve received, do the following:

>>> verified = gpg.verify(data)

To verify data in a file (or file-like object), use:

>>> verified = gpg.verify_file(stream) # e.g. after stream = open(filename, "rb")

You can use the returned value in a Boolean context:

>>> if not verified: raise ValueError("Signature could not be verified!")

Verifying detached signatures on disk

If you want to verify a detached signature, use the following approach:

>>> verified = gpg.verify_file(stream, path_to_data_file)

Note that in this case, the stream contains the signature to be verified. The
data that was signed should be in a separate file whose path is indicated by
path_to_data_file.

New in version 0.2.5: The second argument to verify_file (data_filename) was added.

New in version 0.4.1: An optional keyword argument to verify_file (close_file) was added. This
defaults to True, but if set to False, the signature stream is not closed.
It’s then left to the caller to close it when appropriate.

An optional keyword argument extra_args was added. This defaults to None,
but if a value is specified, it should be a list of extra arguments to pass to the
gpg executable.

New in version 0.4.4: When signature verification is performed, multiple signatures might be present.
Information about all signatures is now captured in a sig_info attribute of the
value returned from verify. This is a dictionary keyed by the signature ID and
whose values are dictionaries containing the following information (note - all are
string values):

	fingerprint - the fingerprint of the signing key. * pubkey_fingerprint -
this is usually the same as fingerprint, but it might be different if a
subkey was used for the signing.

	keyid - the key id.

	username - user information for the signing key.

	status - this indicates the status of the signature.

	creation_date - the creation date of the signature in text format, YYYY-MM-DD.

	timestamp - the signature creation time as a timestamp.

	expiry - the signature expiry time as a timestamp, or '0' to
indicate no expiry.

	trust_level - the trust level, see below.

	trust_text - the text corresponding to the trust level.

When a signature is verified, signer information is held in attributes of
verified: username, key_id, signature_id, fingerprint,
trust_level and trust_text. If the message wasn’t signed, these attributes
will all be set to None. If there were multiple signatures, the last values seen
will be shown.

The trust levels are (in increasing order) TRUST_UNDEFINED, TRUST_NEVER,
TRUST_MARGINAL, TRUST_FULLY and TRUST_ULTIMATE. If verification succeeded, you can
test the trust level against known values as in the following example:

verified = gpg.verify(data)
if verified.trust_level is not None and verified.trust_level >= verified.TRUST_FULLY:
 print('Trust level: %s' % verified.trust_text)

New in version 0.3.1: The trust_level and trust_text attributes were added.

Note that even if you have a valid signature, you may want to not rely on that
validity, if the key used for signing has expired or was revoked. If this information
is available, it will be in the key_status attribute =, and the result will still
be False in a Boolean context. If there is no problem detected with the signing
key, the key_status attribute will be None.

New in version 0.3.3: The key_status attribute was added.

New in version 0.4.2: The keyid and username of the signing key are stored in the key_id and
username attributes of the result, if this information is provided by gpg.

Verifying detached signatures in memory

You can also verify detached signatures where the data is in memory, using:

>>> verified = gpg.verify_data(path_to_signature_file, data)

where data should be a byte string of the data to be verified against the signature
in the file named by path_to_signature_file. The returned value is the same as for
the other verification methods.

In addition, an extra_args keyword parameter can be specified. If provided, this
is treated as a list of additional arguments to pass to the gpg executable.

New in version 0.3.6: The verify_data method was added.

New in version 0.4.1: The extra_args keyword argument was added.

Passphrases

Passphrases provided to python-gnupg are not stored persistently, and just passed
through to the GnuPG executable through a pipe. The user of python-gnupg is
responsible for taking care not to store passphrases where they may become available
to malicious code or malicious users, as well as the physical and security aspects of
managing their private keys.

Logging

The module makes use of the facilities provided by Python’s logging package. A
single logger is created with the module’s __name__, hence gnupg unless you
rename the module. A NullHandler instance is added to this logger, so if you don’t
use logging in your application which uses this module, you shouldn’t see any logging
messages. If you do use logging in your application, just configure it in the normal
way.

Test Harness

The distribution includes a test harness, test_gnupg.py, which contains unit tests
(with integrated doctests) covering the functionality described above. You can invoke
test_gnupg.py with one or more optional command-line arguments. If no arguments
are provided, all tests are run. If arguments are provided, they collectively
determine which of the tests will be run:

	doc

	Run doctests only (they cover most of the functionality of the module)

	crypt

	Run tests relating to encryption and decryption

	sign

	Run tests relating to signing and verification

	key

	Run tests relating to key management

	basic

	Run basic tests relating to environment setup, or which don’t fit into one of the
above categories

Download

The latest version is available from the PyPI [https://pypi.python.org/pypi/python-gnupg] page.

Status and Further Work

The gnupg module, being based on proven earlier versions, is quite usable, and
comes packaged with Linux distributions such as Debian, Ubuntu and Fedora. However,
there may be some features of GnuPG which this module does not take advantage of, or
provide access to. How this module evolves will be determined by feedback from its
user community.

Support for GnuPG 2.1 is limited, because that version of GnuPG does not provide the
ability to prevent pinentry popups in all cases. This package sends passphrases to the
gpg executable via pipes, which is only possible under GnuPG 2.1 under limited
conditions and requiring end-users to edit GnuPG configuration files.

At present, functionality that requires interacting with the gpg executable (e.g.
for key editing) is not available. This is because it requires essentially a state
machine which manages the interaction - moreover, a state machine which varies
according to the specific version of the gpg executable being used.

If you find bugs and want to raise issues, please do so via the BitBucket project [https://bitbucket.org/vinay.sajip/python-gnupg/issues/new].

All feedback will be gratefully received; please send it to the discussion group [http://groups.google.com/group/python-gnupg].

Index

	Index

 Python Module Index

 g

 		 	

 		
 g	

 	
 	
 gnupg	
 A Python wrapper for the GNU Privacy Guard (GnuPG)

Index

 A
 | D
 | E
 | G
 | K
 | L
 | S
 | V

A

 	
 	Acknowledgements

D

 	
 	Decryption

 	
 	Deployment

 	Download

E

 	
 	Encryption

 	symmetric

 	
 	Entropy

G

 	
 	Getting started

 	
 	gnupg (module)

K

 	
 	
 Key

 	deleting

 	exporting

 	generating

 	importing

 	listing

 	management

 	performance issues

 	receiving

 	scanning

 	searching

 	sending

 	trusting

L

 	
 	Logging

S

 	
 	Signing

V

 	
 	Verification

 nav.xhtml

 Table of Contents

 		
 python-gnupg - A Python wrapper for GnuPG

_static/ajax-loader.gif

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

